Sequential Bayesian inference for vector autoregressions with stochastic volatility
نویسندگان
چکیده
منابع مشابه
Identification of Structural Vector Autoregressions by Stochastic Volatility
In Structural Vector Autoregressive (SVAR) models, heteroskedasticity can be exploited to identify structural parameters statistically. In this paper, we propose to capture time variation in the second moment of structural shocks by a stochastic volatility (SV) model, assuming that their log variances follow latent AR(1) processes. Estimation is performed by Gaussian Maximum Likelihood and an e...
متن کاملBayesian Vector Autoregressions
This article provides an introduction to the burgeoning academic literature on Bayesian Vector Autoregressions, benchmark models for applied macroeconomic research. We first explain Bayes’ theorem and the derivation of the closed-form solution for the posterior distribution of the parameters of the model given data. We further consider parameter shrinkage, a distinguishing feature of the prior ...
متن کاملInference for Stochastic Volatility models: a sequential approach
In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effect. Our idea relies on the auxiliary particle filter method that allows to sequentially evaluate the parameters and the latent processes involved in the dynamic. An empirical application on simulated data is presented to study some empirical properties of the algorithm impleme...
متن کاملChapter on Bayesian Inference for Stochastic Volatility Modeling
This chapter reviews the major contributions over the last two decades to the literature on the Bayesian analysis of stochastic volatility (SV) models (univariate and multivariate). Bayesian inference is performed by tailoring Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) schemes that take into account the specific modeling characteristics. The popular univariate stochastic vo...
متن کاملBayesian Inference for Markov Switching Stochastic Volatility Models
We study a Markov switching stochastic volatility model with heavy tail innovations in the observable process. Due to the economic interpretation of the hidden volatility regimes, these models have many financial applications like asset allocation, option pricing and risk management. The Markov switching process is able to capture clustering effects and jumps in volatility. Heavy tail innovatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Economic Dynamics and Control
سال: 2020
ISSN: 0165-1889
DOI: 10.1016/j.jedc.2020.103851